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Heat transfer during condensation of vapor on a laminar jet of liquid is nu- 
merically analyzed, taking into account the initial segment. 

Condensation of vapor directly on a cooling heat carrier is promising on account of the 
high intensity of this process. Such processes occur in mixing preheaters, condensers, and 
various power-plant components. Only too few and insufficiently thorough theoretical cal- 
culations of heat transfer in mixing condenser plants have been made so far, with not too 
many experimental data available. 

When pure vapor condenses at not too low pressures, then the intensity of condensation 
is determined principally by the heat-transfer processes in the jet and those depend on the 
flow pattern, on the interphase friction, on the jet geometry, and on the physical properties 
of the liquid. The condensation rate is highest along the initial jet segment, where the 
velocity profile as well as the jet surface evolve most noticeably. 

This problem was first considered by Kutateladze [i]. With some modifications, it was 
considered in subsequent studies [2, 3]. 

The dependence of vapor condensation on a jet on the initial profile has not been theo- 
retically treated, and yet experimental data pertaining to the initial segment [2] seem to 
differ appreciably from calculations. 

It will be assumed that a jet of liquid with an initial temperature To discharges through 
a circular orifice at x = 0, with a radius Ro and a given velocity distribution over its 
cross section, into a space containing saturated vapor of this liquid at the temperature Ts, 
the radical temperature gradient in the jet being much larger than the axial one. In this 
case the equations of momentum and energy for laminar flow of such a jet are 
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The initial and boundary conditions are 
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With  t h e  a i d  o f  t h e  d i m e n s i o n l e s s  v a r i a b l e s  
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Fig. i. Dependence of the dimensionless jet radius on the 
dimensionless jet lengthf a) NWe = 0.5; i) NRe = 772; 
i000; 2) NRe = 200; b) NRe = 772; 3) NWe = 0.001; 4) 0.05; 
5) 5. 

Fig. 2. Evolution of the dimensionless temperature profile 
at various distances from the jet discharge orifice (NRe = 
772; NWe = 0.05): a) Npr = 7; b) Npr = 50. 

Ro - vCl/2 u; 
x = RoX;  y = -C-O~- Y; u - Ro 

vC 1/4 - vzC T -  To 
v; P = p  P; T = - - ,  

v = Ro ~ T s -  To 

where C =  gt?~ , t he  sy s t em of  e q u a t i o n s  ( 1 ) - ( 3 )  can be  r e d u c e d  to  t he  form 
~2 

(5) 
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convenient for numerical integration by the method shown earlier [4]. 

The system of equations (6)-(8) was integrated by the Runge--Kutta method. The numerical 
solution has yielded the shape of the jet as well as its longitudinal velocity and tempera- 
ture profiles. 

The dependence of the dimensionless jet radius on the dimensionless jet length at various 
values of the Reynolds number and the Weber number is shown in Fig. I. The graph here indi- 
cates that the trend of this relation between jet radius and jet length is almost independent 
of the Reynolds number, but depends noticeably on the Weber number: as the latter increases, 
the radius decreases faster with increasing length. 

The evolution of the dimensionless temperature profile over the jet cross section at 
various distances from the place of discharge is shown in Fig. 2. At x = 0 the initial tem- 
perature To (T = 0) is given. The jet is then heated from its surface, where the temperature 
is T s (T = i), the temperature profile bends and then becomes flat again, i.e., the jet has 
been heated entirely to the temperature T s (T = i). This process becomes faster at lower 
values of the Prandtl number, but the shape of the temperature profile depends neither on the 
Reynolds number nor the Weber number. 
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Fig. 3. Dependence of the Stanton 
number on the dimensionless jet 
length: (a) NRe = 473; (b) NRe = 
772. 

In order to determine the local thermal flux density at the jet surface %(~T/~Y)R(x), we 
multiply Eq, (2) by T and Eq. (3) by y before adding them: 

O(yuT) _~ O(yvT) _ ya(  02T " I OT ) 
Ox Oy \ Oy 2 + - y  --Oy " 

R 

Integration of the resulting equation over the jet radius, for a constant flow rate ~ yud 9 = 
0 

cons t ,  y i e l d s  the  r e l a t i o n  

R 

d ~ yuTdy, 
dx 

o (9) 

from which we obtain the expression 

k (  aT - 

for the local thermal flux density, 
face is 

R 

pC v d S 9uTd9 
R clx. 

O (io) 

The mean heat-transfer coefficient from the jet sur- 

r HAT n 
0 

where Y denotes the area of the contact surface between liquid and vapor 

(ii) 

H = S 2~R(x) dx. 
0 

With relation (i0), the expression for the mean heat-transfer coefficient becomes 

(12) 

9Cv 2z~ d_ yuTdydx 
HAT dx , 

0 0 

or in terms of dimensionless variables 

(13) 
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C 1/4 ~)Cp~ ~ -y -~Td# o 
o 

x 

0 
(14) 
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We now introduce the dimensionless Stanton number 

NSt = _ _  
pCpUo (15) 

Inserting here the expression for the mean heat-transfer coefficient yields 

aara  cll4 
NS t _ o 

NRe ~- 

o ( 1 6 )  

A numerical solution of Eqs. (6)-(8), with the Weber number varied from 0.001 to 5, the Rey- 
nolds number varied from 200 to i000, and the Prandtl number varied from 1 to 50, has 
yielded an approximate (within 5%) expression for the Stanton number 

where 

[ X ~--0,8 
Nst -- f#21  i �89 \ (17) 

r 
[i = 1.25.10 -2- 7,5.10-6NRe;f2 ~ 1.05---Npr~8.10-3--3 �9 I0-~0) ; 

fa = 1 .05- -Nwe 0.4 + 0.1 2Ro ' 

x (0 ,03 - -  0.6Nwe) for NWe < 0.05. f. = 1.05 --Swe+ ~ 

It is interesting to compare the proposed theoretical expressions with the experimental 
data [2] pertaining to the heat released during condensation of water vapor on a laminar 
water jet. The dependence of the Stanton number on the dimensionless jet length is shown in 
Fig. 3. Here curves i and 2 are based on expression (17) with NWe = 0.05, NRe = 772 and 473, 
respectively, curves 3 and 4 are theoretical curves based on earlier studies [i, 2] with 
i/NReNpr = I.i0 -~ and 2.10 -~, respectively, and the dots represent experimental data [2, 3]. 

The graph in Fig. 3 indicates a satisfactory agreement between theoretical and experi- 
mental results. The maximum deviation of theoretical values from experimental data does not 
exceed 10%. 

NOTATION 

x, y, coordinates of an orthogonal system tied to the axis of symmetry of the jet; u, v, 
components of the velocity vector along coordinates x, y, respectively; T, temperature; v, 
kinematic viscosity; a, thermal diffusivity; p, density; Y, coefficient of surface tension; 
~, thermal conductivity; NRe = UoRo/v, Reynolds number; Npr = v/a, Prandtl number; and NWe = 
0v=CS/4/YRo, Weber number. 
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